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Stock Return Predictability and Model Uncertainty

Abstract

We use Bayesian model averaging to analyze the sample evidence on return predictability in

the presence of uncertainty about the return forecasting model. The analysis reveals in-sample

and out-of-sample predictability, and shows that the out-of-sample performance of the Bayesian

approach is superior to that of model selection criteria. Our exercises find that term premium

and market risk premium are relatively robust predictors. Moreover, small-cap value stocks

appear more predictable than large-cap growth stocks. We also investigate the implications of

model uncertainty from investment management perspectives. The analysis shows that model

uncertainty is more important than estimation risk. Finally, asset allocations in the presence of

estimation risk exhibit sensitivity to whether model uncertainty is incorporated or ignored.



Although financial economists have identified variables that predict stock returns through time

(e.g., Campbell (2000)), the “correct” predictive regression specification has remained an open issue

for several reasons. First, existing equilibrium pricing theories are not explicit about which variables

should enter the predictive regression. This aspect is undesirable, as it renders the empirical evidence

subject to data overfitting concerns. In particular, Bossaerts and Hillion (1999) confirm in-sample

return predictability, but fail to demonstrate out-of-sample predictability. Second, the multiplicity

of potential predictors also makes the empirical evidence difficult to interpret. For example, one may

find an economic variable to be statistically significant based on a particular collection of explanatory

variables, but often not based on a competing specification. Given that the true set of predictive

variables is virtually unknown, this paper proposes a Bayesian model averaging approach to analyze

stock return predictability.

In the context of predictive regressions, the Bayesian methodology is potentially attractive. For

one, it explicitly incorporates model uncertainty, and is therefore robust to model misspecification.

To be precise, the Bayesian approach assigns posterior probabilities to a wide set of competing return-

generating models; it then uses the probabilities as weights on the individual models to obtain a

composite weighted model. This optimally weighted model is then employed (i) to investigate

the sample evidence on return predictability, and (ii) to explore implications of model uncertainty

from investment management perspectives. In one particular application of economic interest, we

investigate how model uncertainty effects asset allocation decisions.

When we apply our Bayesian characterizations to the post-war data, several conclusions emerge

about stock return predictability. First, we show that variables could be significant based on indi-

vidual predictive regressions, but need not be significant when one appeals to the weighted model.

In essence, taking model uncertainty considerations into account appears to diminish the predic-

tive power of explanatory variables. One interpretation of this evidence is that ignoring model

uncertainty could lead to erroneous inferences about the relevance of predictive variables.

Next, the Bayesian methodology reveals the existence of in-sample and out-of-sample predictabil-

ity, even when commonly adopted model selection criteria (such as adjusted R2) fail to demonstrate

out-of-sample predictability (Bossaerts and Hillion (1999)). Moreover, the out-of-sample prediction

errors generated by the weighted model satisfy certain desirable properties. As we show, these

prediction errors have zero mean and are serially uncorrelated. In addition, the forecasting errors

are essentially uncorrelated with predicted returns. In contrast, the out-of-sample performance of

forecast errors generated by model selection criteria is often unsatisfactory.

Our posterior analysis finds that term premium (defined as the rate of return differential between

long-term and short-term treasuries) and the market premium are useful predictors of future stock

returns. On the other hand, the dividend yield and book-to-market, among others, have relatively

small posterior probabilities of being correlated with future returns. The posterior analysis also

detects strong cross-sectional dispersions in predictability among size and book-to-market sorted

portfolios. Posterior odds in favor of predictability are substantially higher for small-cap value

stocks than for large-cap growth stocks.

Based on the Bayesian criterion, we find that trend-deviation-in-wealth (Lettau and Ludvigson

(2001)) displays an impressive predictive power only when the shares of asset wealth and labor

income (in total wealth) are based on data realized subsequent to the prediction period. However,
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trend-deviation-in-wealth has poor predictive power when constructed using quantities available at

the time of prediction. In fact, this variable is dominated by the traditional valuation ratios such as

book-to-market and earnings yield.

Two metrics are developed to judge the statistical and economic implications of model uncertainty

for investment management. In the presence of model uncertainty, it is shown that investment

opportunities can be represented by a weighted Bayesian predictive distribution. This endogenously

derived distribution has the appealing property that it integrates out both the uncertainty about

the forecasting model, and the uncertainty about model parameters (estimation risk). The analysis

shows that model uncertainty is more important than estimation risk for short-horizon investors.

Moreover, asset allocations in the presence of estimation risk display sensitivity to whether model

uncertainty is incorporated or ignored. An investor who is forced to discard model uncertainty,

and instead hold a suboptimal portfolio relying on model selection criteria, perceives a substantial

certainty equivalent loss.

This article is related to a strand of Bayesian studies investigating mispricing uncertainty in stock

returns and/or estimation risk. In a fundamental contribution, Pastor (2000) and Pastor and Stam-

baugh (1999, 2000) investigate the uncertainty about whether a given single asset pricing model is

valid. Mispricing uncertainty is also at the core of the analysis in Brennan and Xia (2001) and Wang

(2001). This study departs along two important dimensions. First, model uncertainty developed

here encompasses a vast set of return generating processes, and consolidates these processes into

a composite optimal weighted forecasting model. Second, our analysis designs a Bayesian model

selection criterion, which exhibits robust out-of-sample forecasting properties.1

In their innovations, Kandel and Stambaugh (1996) and Barberis (2000) explore an asset alloca-

tion problem when stock returns are potentially predictable and the investment universe consists of

an equity portfolio and the riskfree Treasury bill. For example, Barberis (2000) studies multi-period

asset allocations with future rebalancing. Relative to these studies, the buy-and-hold investor con-

sidered here allocates funds across multiple equity portfolios and incorporates the additional element

of model risk. Our results therefore do not hinge on the validity of any single forecasting model.

The remainder of the paper proceeds as follows. Section I derives an analytical result for posterior

probabilities of competing return generating models. It also derives three statistics for investigating

the robustness of predictive variables in the presence of model uncertainty. Section II develops an

econometric framework (i) to study sources of uncertainty about predicted stock returns, and (ii) to

analyze an asset allocation problem under model uncertainty. In Section III we describe the sample

data. Section IV contains empirical results on stock return predictability, and Section V discusses

variance decomposition and asset allocation. Conclusions and ideas for future research are offered

in the final Section VI. The appendix presents all mathematical derivations.

1After the writing of previous versions, I become aware of the work by Cremers (2000) who investigates the

effectiveness of model averaging in predicting returns. While sharing the Bayesian feature, it must be noted at

the outset that our work differs in methodology, and in the scope of empirical findings. In particular, he focuses

on a posterior analysis only, whereas we conduct an extensive posterior and predictive analysis, as outlined above.

Moreover, his focus is on a single equity portfolio, as opposed to our multi-asset paradigm. Other similarities and

differences will be stated explicitly later.
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I Predictability in the Presence of Model Uncertainty

Suppose you want to predict future rate of returns on equity portfolios using a linear predictive

regression. WhenM explanatory variables are suspected relevant, there are 2M competing regression

specifications. Each of these obeys the form

r0t = x
0
j,t−1Bj + ²

0
j,t, (1)

where rt is the N × 1 vector of continuously compounded returns on N portfolios in excess of the

continuously compounded Treasury bill rate and j is a model-specific indicator. In (1), x0j,t−1 =

(1, z0j,t−1), zj,t−1 is a model-unique subset, which contains m variables observed at the end of t− 1,
and Bj is an (m+ 1)×N matrix of the regression intercept and slope coefficients. The parameter

m ranges between zero and M . When m = 0, returns are independently and identically distributed

(iid). The iid model discards all variables as worthless predictors. The all-inclusive specification

corresponds to m =M . For tractability of analysis, we assume that ²j,t is normally distributed with

conditional mean zero and variance-covariance matrix Σj .

In what follows, we term uncertainty about the true set of predictive variables as “model un-

certainty.” Since the available time-series is often limited model uncertainty is especially relevant.

Indeed, in extremely large samples, all potential predictors can be included in an all-inclusive spec-

ification. In this regression, irrelevant variables will have slope-coefficient estimates converging to

zero, their true value. However, in applications studying stock return predictability there are many

possible explanatory variables, but only a limited number of observations. The traditional single

predictive regression paradigm thus offers little help in identifying useful predictors.

Instead, we use the Bayesian model averaging procedure. This procedure computes posterior

probabilities for the collection of all 2M models. It then uses the probabilities as weights on the indi-

vidual models to obtain one composite weighted forecasting model, which summarizes the dynamics

of future stock returns. The weighted model is employed (i) to investigate the sample evidence on

predictability, and (ii) to analyze investment implications of model uncertainty.

Bayesian model averaging contrasts markedly with the traditional approach of model selection.

In the heart of the model selection approach, one uses a specific criterion to select a single model and

then operates as if the model is correct. Implementing model selection criteria, the econometrician

views the selected model as being the true one with a unit probability and discards the other

competing models as worthless, thereby ignoring model uncertainty. In contrast, we average over

the dynamics implied by the set of all 2M models.

The posterior probability computation necessitates eliciting prior distributions of all the relevant

parameters conditional on each possible model (e.g., Kass and Raftery (1995) and Poirier (1995)).

Our prior distribution for each of the model-specific parameters (Bj ,Σj) is based on an hypothetical

prior sample weighted against predictability, as suggested by Kandel and Stambaugh (1996). In

that sample, the slope coefficients in the regression of excess stock returns on a set of information

variables are equal to zero, and the means and variances of stock returns and predictive variables
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are equal to the actual sample counterparts, which are given by:

r̄ =
1

T

TX
t=1

rt, (2)

V̂r =
1

T

TX
t=1

(rt − r̄)(rt − r̄)0, (3)

z̄j =
1

T

T−1X
t=0

zj,t, (4)

V̂j,z =
1

T

T−1X
t=0

(zj,t − z̄j)(zj,t − z̄j)0, (5)

where T is the actual sample size.

Using statistics from the actual sample to specify some of the parameters of the prior distribution

is commonly termed “empirical Bayes” (Robbins (1955, 1964)). Based on the hypothetical prior

sample, the prior for the regression coefficient Bj conditional on Σj is given by the multivariate

Normal distribution:

vec(Bj)|Σj ∼ N
Ã
vec(Bj,0),

1

T0
Σj ⊗

"
1 + z̄0j V̂

−1
j,z z̄j −z̄0j V̂ −1j,z

−V̂ −1j,z z̄j V̂ −1j,z

#!
, (6)

where Bj,0 = [r̄,0j ]
0
, 0j is an N×m matrix of zeros reflecting the ‘no predictability’ prior sample, T0

is the size of the hypothetical sample, and vec(•) denotes the vector formed by stacking the successive
transformed rows of the matrix. The marginal prior for Σj follows Kandel and Stambaugh (1996,

equation B.6) and obeys the inverted Wishart distribution (Zellner (1971)):

Σj ∼ IW (T0V̂r, T0 −m− 1). (7)

The analysis depends upon T0, which determines the strength of the informative prior. As an

extreme, if T0 approaches infinity, the investor displays dogmatic beliefs about no predictability.

Any finite sample size cannot reverse such tight beliefs. Our task is, therefore, to pick a reasonable

value for the prior sample size. Kandel and Stambaugh (1996) motivate such a value. Using Monte

Carlo simulations, they show that the implied priors of R2 in the regression of excess stock returns

on lagged predictive variables are roughly invariant to the number of predictors if the number of

hypothetical data entries per parameter is held fixed (50 observations per parameter) as the number

of parameters changes. Our analysis relies primarily on this. Essentially, the hypothetical prior size

increases as the model contains more predictive variables. Therefore, we will denote the prior sample

size with the model-specific indicator, i.e., Tj,0.

Having determined prior distributions for each of the competing models, we are ready to derive

analytical expressions for the corresponding posterior probabilities. The posterior probability of

model j (denotedMj) is given by

P (Mj |D) = P (D|Mj)P (Mj)P2M

i=1 P (D|Mi)P (Mi)
, (8)

where D stands for the data, P (Mj) is the prior probability ofMj , which is at the discretion of the

decision-maker, and P (D|Mj) is the corresponding marginal likelihood. The marginal likelihood is
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given by

P (D|Mj) =
P (D|Σ, B,Mj)P (Σ, B|Mj)

P (Σ, B|D,Mj)
, (9)

where P (D|Σ, B,Mj) is the conditional likelihood pertaining toMj and P (Σ, B|Mj) and P (Σ, B|D,Mj)

are the joint prior and posterior distributions of the model-specific parameters, respectively.

Computing the log marginal likelihood is straightforward: take logs from both sides of (9) and

replace the prior, likelihood, and posterior densities by their corresponding normalization constants.

It is shown in the appendix that the (log) marginal likelihood is given by

ln [P (D|Mj)] = −TN
2
ln(π) +

Tj,0 −m− 1
2

ln |Tj,0V̂r|−
T ∗j −m− 1

2
ln |S̃j | (10)

−
NX
i=1

ln

½
Γ

µ
Tj,0 −m− i

2

¶¾
+

NX
i=1

ln

½
Γ

µ
T ∗j −m− i

2

¶¾
− N(m+ 1)2

2
ln

µ
T ∗j
Tj,0

¶
,

where

S̃j = T ∗j
³
V̂r + r̄r̄

0
´
− T

T ∗j

¡
Tj,0[r̄, r̄z̄

0
j ] +R

0Xj
¢
(X 0

jXj)
−1 ¡Tj,0[r̄, r̄z̄0j ]0 +X 0

jR
¢
, (11)

Xj = [xj,0, xj,1, . . . , xj,T−1]0, (12)

R = [r1, r2, . . . , rT ]
0, (13)

T ∗j = T + Tj,0, Γ(y) stands for the Gamma function evaluated at y, and |x| is the determinant
of x. For the iid model the marginal likelihood follows similarly except that S̃iid = T ∗iidV̂r. The

explanatory variables are deterministic, consistent with other studies computing marginal likelihood

(Kass and Raftery (1995)) and traditional model selection criteria (Bossaerts and Hillion (1999)).

Having derived posterior probabilities, we propose three statistics to investigate the robustness of

explanatory variables in predictive regressions. The first is cumulative posterior probabilities of the

predictive variables. It is computed as A0P, where A is a 2M×M matrix representing all forecasting

models by zeros and ones, designating exclusions and inclusions of predictors, respectively, and P
is a 2M × 1 vector containing model posterior probabilities. The resulting quantity indicates the
probabilities that each of the predictive variables appears in the weighted forecasting model.

To illustrate, if the iid model receives a posterior probability equal to unity, the cumulative

posterior probabilities are represented by an M × 1 vector of zeros. On the other hand, if the
all-inclusive model receives the entire posterior mass, the posterior probabilities are represented

by an M × 1 vector of ones. Let us also consider a more representative example. Suppose that
some predictive variable, say dividend yield, receives a cumulative posterior probability of 45%.

This suggests that dividend yield should appear in the weighted return-forecasting model with a

probability of 45%.

The second statistic is a posterior t ratio. It is obtained by dividing the posterior mean of each

of the slope coefficients in the weighted model by its corresponding posterior standard error. Based
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on Leamer (1978, 117-118), the posterior mean and its corresponding variance are given by:2

E(B|D) =
2MX
j=1

P (Mj |D) B̃j , (14)

Var(B|D) =
2MX
j=1

P (Mj |D)
(
T S̃j(X

0
jXj)

−1

T ∗j (T
∗
j − 4)

+
h
B̃j − E(B|D)

i h
B̃j − E(B|D)

i0)
, (15)

where

B̃j =
T

T ∗j
(X 0

jXj)
−1(Tj,0[r̄, r̄z̄0j ]

0 +X 0
jR), for j = 1 . . . 2

M and j 6= iid,

and B̃iid = r̄. The mean (14) follows by iterated expectations, conditioning first on the model space.

The variance (15) follows by using properties of the inverted gamma distribution (Zellner (1971))

and variance decomposition.

The posterior mean is merely a weighted average of slope estimates. The posterior variance

incorporates both the estimated variances in every entertained model and the model-uncertainty

component attributed to the dispersion in posterior means of the regression slopes across the models.

The posterior t statistic differs from the well-known classical counterpart in that it explicitly accounts

for model uncertainty. The greater the uncertainty about the true forecasting model, the smaller

the posterior t-ratio.

The third statistic is a posterior-odds ratio obtained by dividing the sum of posterior probabilities

assigned to 2M − 1 models that retain at least one predictor by the posterior probability of the iid
model. Posterior odds have also been found to be useful in testing portfolio efficiency, as noted by

Shanken (1987). Specifically, Shanken (1987) shows that using posterior odds leads to a particular

inference about mean variance efficiency that could substantially differ from the one obtained by the

traditional p value.

II Model Uncertainty and Investment Perspectives

Kandel and Stambaugh (1996) and Barberis (2000) have shown that predictive regressions are useful

in making portfolio decisions when investment opportunities are time-varying and the investment

universe consists of an equity portfolio and the riskfree Treasury bill. Kandel and Stambaugh (1996)

focus on a single period investor. Barberis (2000) extends their setting to a multi-period problem, in

which the investor dynamically rebalances his portfolio. Both studies incorporate estimation risk, but

not model risk. This section develops a framework for analyzing buy-and-hold investment decisions in

the presence of model uncertainty when the investment universe consists of multiple equity portfolios

2Here, we consider a multiple regression run separately for any risky asset. The multivariate student t distribution

follows by integrating out Σ from the multivariate normal distribution P (B|Σ, D). Both B̃j and S̃j are of equal

dimension for any entertained model since slope coefficients of excluded variables are zero. To illustrate, we rewrite

B̃iid as [r̄, 0]
0, where 0 is a 1×M vector of zeros. Similarly, S̃iid is an (M +1)× (M +1) variance matrix, all of which

entries are zero, except for the (1,1) entry, which is equal to
PT
t=1(rt − r̄)2.
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and a riskfree asset. Investment opportunities are expressed by the Bayesian weighted predictive

distribution, as described below.

A The Bayesian Weighted Predictive Distribution

Let y0j,t = (r
0
t, z

0
j,t) be the data-generating process corresponding to model j. We assume that the

evolution of yj,t is governed by the stochastic process

y0j,t = x
0
j,t−1Φj + u

0
j,t, (16)

where Φj is an (m+1)× (N+m) matrix whose first (m+1)×N columns is the matrix of predictive

regression coefficients, Bj , and uj,t is an (N + m) × 1 vector of forecast errors. We assume that
uj,t ∼ iid N (0,Ψj). The data-generating process (16) nests a first order VAR for the dynamics of
the predictive variables

z0j,t = a
0
j + z

0
j,t−1Aj + η

0
j,t. (17)

The assumption of a first-order VAR is not restrictive since a higher-order VAR system can be

reexpressed in a first order form (Campbell and Shiller (1988a)).

The Bayesian weighted predictive distribution of cumulative excess continuously compounded

returns averages over the model space, and integrates over the posterior distribution that summarizes

the within-model uncertainty about Φj and Ψj . It is given by

P (RT+K |D) =
2MX
j=1

P (Mj |D)
Z
Ψj ,Φj

P (Φj ,Ψj |Mj , D)P (RT+K |Mj ,Φj ,Ψj , D) dΦjdΨj , (18)

where K is the investment horizon and RT+K =
PK

k=1 rT+k. To our knowledge, an analytical

solution for the integral in (18) is not feasible when K > 1. Therefore, Monte Carlo integration is

used in our empirical implementation.

Sampling from the Bayesian weighted predictive distribution is obtained by three steps, drawing

first from the discrete distribution of models. To be precise, a modelMj is drawn with probability

P (Mj |D).3 Second, the model-specific parameters Φj and Ψj are drawn from their joint posterior

distribution (derived in the appendix). Third, given Φj andΨj , anN×1 random vector of cumulative
excess continuously compounded returns is drawn from the distribution of future stock returns

conditioned upon the model, its specific parameters Φj and Ψj , and the sample data.

The conditional distribution is given by (see the appendix)

RT+K |Mj ,Φj ,Ψj ,D ∼ N (λj ,Υj) , (19)

3We make use of posterior probabilities computed based upon deterministically evolved predictive variables. When

such variables are stochastic, the dependent variables (see equation 16) are model specific, whereas a posterior prob-

ability computation necessitates such variables to be equal across models. Essentially, our computation is robust to

misspecification in the true dynamics of predictive variables.
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where

λj = Kbj + Cj
£
((A0j)

K − Im)(A0j − Im)−1
¤
zj,T , (20)

+ Cj
£
A0j
¡
(A0j)

K−1 − Im
¢
(A0j − Im)−1 − (K − 1)Im

¤
(A0j − Im)−1aj ,

Υj = KΣj +
KX
k=1

δj(k)Θjδj(k)
0 +

KX
k=1

Λjδj(k)
0 +

KX
k=1

δj(k)Λ
0
j , (21)

δj(k) = Cj
£¡
(A0j)

k−1 − Im
¢
(A0j − Im)−1

¤
, (22)

bj and Cj are partitions of Bj corresponding to the intercept and slope coefficients in the regression

of excess returns on lagged predictive variables, i.e., Bj = [bj , Cj ]
0, and Λj and Θj are partitions of

the variance-covariance matrix Ψj :

Ψj =

"
Σj Λj

Λ0j Θj

#
. (23)

Essentially, no predictability corresponds to Ciid = 0, which yields λiid = Kbiid and Υiid = KΣiid.

The conditional mean and variance in an iid world increase linearly with the investment horizon.

The third step, i.e., drawing from the conditional distribution of future returns, improves the

algorithm proposed by Barberis (2000, equations 18 and 19). Barberis draws both returns and

information variables from their joint conditional distribution, whereas we sample directly from

the distribution of returns. Our algorithm is especially efficient when there is a large number of

predictive variables and/or the investment universe contains multiple equity portfolios.

When investors are assumed to know the model and its specific parameters the only information

from the sample relevant to drawing from the distribution of future stock returns would be the

most recent observation of the predictive variables (zj,T ). Such an assumption is undertaken by the

classical approach for asset allocation. Accounting for both estimation and model risks, the perceived

distribution of future returns departs from normality, and may be impacted by higher-order moments

such as skewness and fat tails.

B Variance Decomposition

Based on the weighted predictive distribution, one can show that future stock returns over the

investment horizon are subject to three sources of uncertainty: (i) model uncertainty; (ii) a mixture

of estimation risk; and (iii) a mixture of the within-model forecast error. The appendix shows that

the variance of predicted stock returns can be decomposed as follows

var{RT+K |D} =
2MX
j=1

P (Mj |D)
∙
E{Υj}+ var{λj}+

³
λ̃− E{λj}

´³
λ̃− E{λj}

´0¸
, (24)

where E{Υj} and var{λj} are two variance components corresponding to the forecast error and
parameter uncertainty, respectively. By standard results (Leamer (1978)), the model uncertainty

component is given by

2MX
j=1

P (Mj |D)
³
λ̃− E{λj}

´³
λ̃− E{λj}

´0
, (25)
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where λ̃ =
P2M

j=1 P (Mj |D)E{λj} is the predicted mean of cumulative stock returns that averages
across model-specific predicted means using posterior probabilities as weights. The empirical section

quantifies each of the three risk components.

C Portfolio Choice in the Presence of Model Uncertainty

What are the implications of model uncertainty for investment decisions? The optimization problem

of a buy-and-hold investor with iso-elastic preferences who allocates funds across N risky portfolios

and the risk-free Treasury bill and who does not know the a priori true set of predictors is given by:

ω∗ = argmax
ω

Z
RT+K

[(1− ω0ιN ) exp(rfK) + ω0 exp(rfKιN +RT+K)]1−γ
1− γ P (RT+K |D) dRT+K , (26)

where the integral is taken over the Bayesian weighted predictive distribution. In (26), γ is the

relative risk aversion parameter, ω is an N × 1 vector denoting portfolio weights chosen for N risky

portfolios at time T , ιN is an N × 1 vector of ones, and rf is the continuously compounded risk-free
rate of return, assumed constant over the investment horizon. Portfolio weights are restricted to

the unit interval, meaning that short selling and buying on margin are precluded; otherwise, the

expected utility would be equal to −∞ (as explained by Barberis (2000) and others).

The expected utility maximization displayed in (26) is a version of the general Bayesian control

problem developed by Zellner and Chetty (1965). Bawa, Brown, and Klein (1979), Jobson and

Korkie (1980), Jorion (1985), Frost and Savarino (1986), Pastor (2000), and Pastor and Stambaugh

(2000) compute optimal portfolios in a one-period framework in which returns are assumed iid.

On the other hand, Avramov (2000), Kandel and Stambaugh (1996), Barberis (2000), and Tamayo

(2000) analyze a portfolio decision when returns are potentially predictable. In these studies the

conditional distribution of stock returns is integrated over the parameter space to account for esti-

mation risk. Integrating over both the model space and the within-model parameter space extends

existing frameworks.

The integral in equation (26) is approximated by generating 400,000 independent draws forn
R
(g)
T+K

oG
g=1

from the weighted predictive distribution using the algorithm described above. A

constrained optimization code is then used to maximize the quantity

E [U(WT+K(ω))] =
1

G

GX
g=1

n
(1− ω0ιN ) exp(rfK) + ω0 exp(rfKιN +R(g)T+K)

o1−γ
1− γ (27)

subject to ω being non negative, where G denotes the number of draws.

Since the analysis developed in Section I contains some overlap with Cremers (2000), it makes

sense to highlight the similarities and differences between the two papers. While he also computes

posterior probabilities, he does not account for predictive aspects of model uncertainty as is articu-

lated here in equations (16)- (27). In particular, we analytically decompose the variance of predictive

returns into various components and examine those components empirically. We also derive a frame-

work to study asset allocations in the presence of model uncertainty and report results showing how

the portfolio choice depends on whether we discard or incorporate model uncertainty. Second, Cre-

mers only employs a single risky asset. In contrast, our paradigm accommodates multiple portfolios.
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Therefore, our analysis permits comovements across assets and hence realistically allows for asset

allocation across multiple assets. Moreover, by deriving the posterior t ratios, we investigate the

significance of variables in predictive regressions when model uncertainty is incorporated.

III Data

The empirical examination uses monthly and quarterly observations on stock returns and information

variables over April 1953 through December 1998. The investment universe consists of the six Fama

and French (1993) portfolios, formed as the intersection of two size (S,B) and three book-to-market

(L,M,H) groups. Each of the 2M competing models considered in the study retains a unique subset

of the following M = 14 information variables (taking one lag):

1. dividend yield on the value-weighted NYSE index (Div)

2. book-to-market on the Standard & Poor’s Industrials (BM)

3. earnings yield on the Standard & Poor’s Composite (EY)

4. the winners-minus-losers one-year momentum in stock returns (WML)

5. default risk spread, formed as the difference in annualized yields of Moody’s Baa and Aaa

rated bonds (Def)

6. monthly rate of a three-month Treasury bill (Tbill)

7. excess return on the CRSP value-weighted index with dividends (RET)

8. default risk premium, formed as the difference between return on long-term corporate bonds

and return on long-term government bond (DEF)

9. term premium, formed as the difference between the monthly return on long-term government

bond and the one month Treasury bill rate (TERM)

10. January Dummy (Jan)

11. monthly inflation rate (Inf)

12. size premium (SMB)

13. value premium (HML)

14. term spread, formed as the difference in annualized yield of ten-year and one-year Treasuries

(Term).

The source of data and descriptive statistics are provided in the appendix.

10



In deciding which predictors to include, attention was given to those variables found important in

previous studies as well as those popular business cycle variables for which there exist some theoreti-

cal motivations.4 The reasoning for including the variables PREM, TERM, HML, and SMB, mostly

notable as economy-wide factors in asset pricing models, follows Merton (1973) whose intertemporal

CAPM does not distinguish between variables that predict market returns and variables that ex-

plain the cross-section variation in expected return. Moreover, Liew and Vassalou (2000) show that

SMB and HML are useful in predicting economic growth, making the inclusion of these variables of

interest while examining stock return predictability.

Table 1 exhibits slope coefficients (top figures) and their corresponding t-ratios (middle fig-

ures) obtained by regressing excess monthly returns on size book-to-market sorted portfolios on

an intercept and 14 lagged predictive variables described above. Also reported (bottom figures)

are covariances between unexpected returns and innovations in predictive variables, cov(²t+1, η
0
t+1).

Such covariances are important determinants of asset allocation decisions when investment oppor-

tunities are time-varying (see Barberis (2000)). Table 1 exhibits ample evidence supporting return

predictability, as many of the information variables are significant at conventional significance levels.

IV Empirical Results on Stock Return Predictability

A Monthly Observations

Consideration of all linear data-generating processes in the presence of fourteen predictive variables

necessitates the comparison of 214 = 16, 384 models. Equation (10) computes the marginal likelihood

for every model, and equation (8) weights the marginal likelihood by the model prior probability and

normalizes the result to obtain the model posterior probability. It is assumed that the prior odds of

predictability versus no predictability is unity. It is further assumed that the prior probabilities of

all models that include predictors are equal.

Table 2 reports the results. The top figures display cumulative posterior probabilities A0P
for the fourteen predictors, as noted earlier. The bottom figures denote the highest-probability

compositions, represented by combinations of zeros and ones, designating exclusions and inclusions

of predictive variables, respectively.

Several aspects of results merit closer attention. First, only one or at most two predictors are

retained as useful in the highest-probability models. Other predictive variables are discarded as

worthless. Second, the highest-cumulative-probability predictors are the market premium, term

premium, January Dummy, and inflation. The market premium is prominent in predicting small-

cap stocks regardless of their book-to-market classification. However, it poorly predicts large-cap

4Studies using subsets of the above-listed predictors include Brandt (1999), Ait-Sahalia (2001) and Brandt, Camp-

bell (1987), Campbell and Shiller (1988b), Carhart (1997), Chen, Roll, and Ross (1986), Fama and French (1988,

1989, 1993), Fama and Schwert (1977), Ferson and Harvey (1991, 1999), French, Schwert, and Stambaugh (1987),

Goetzmann and Jorion (1993), Keim and Stambaugh (1986), Kirby (1997, 1998), Kothari and Shanken (1997), Lo

and MacKinlay (1997), Pesaran and Timmermann (1995), Schwert (1990), and Shanken (1990).
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stocks. January Dummy better predicts small-cap than large-cap stocks. This is consistent with

Blume and Stambaugh (1983) and Keim (1983), who trace much of the evidence on the size effect to

the month of January. January Dummy also better predicts high-versus-low book-to-market stocks.

Next, among the traditional market multipliers, i.e., dividend yield, book-to-market, and earnings

yield, the latter receives the highest cumulative probabilities. Lastly, although previous evidence

has shown that SMB and HML are robust in predicting contemporaneous stock returns (Fama and

French (1993)) and future economic growth (Liew and Vassalou (2000)), they are correlated only

marginally with future monthly returns.

Table 3 exhibits posterior means of slope coefficients in the weighted model (top figures), as

computed in (14), and two t-ratios. The first (middle figures) is obtained by dividing the posterior

mean by the posterior standard error corresponding to the first component in (15), thereby ignoring

model uncertainty. The second, the posterior t-ratio (bottom figures), divides the posterior mean

by the two sources of uncertainty, including model uncertainty that summarizes the dispersion in

posterior means of slope coefficients across the models.

The extra variance of slope coefficients in predictive regressions attributed to (ex post) model

uncertainty calls into question the apparent predictive power of many economic variables. The

market premium, term premium, January dummy, inflation, and term spread may be significant

based on t-ratios that ignore model uncertainty, but often not when such uncertainty is taken into

account. This shows that after observing the sample data there is still a large amount of uncertainty

about the true return-generating model, leading to considerable uncertainty about the true values

of slope coefficients in the weighted model.

As may be suspected, the cumulative posterior probabilities (A0P) should be related to the pos-
terior t-ratios, and they do. Focusing on small-cap portfolios, high cumulative posterior probabilities

for the market premium, January Dummy, term premium, and inflation (Table 2) are followed by

higher values of posterior t-ratios (Table 3). Focusing on large-cap portfolios, smaller cumulative

probabilities for RET, WML, and HML are followed by smaller posterior t-ratios.

The third statistic undertaken to assess the sample evidence on predictability is the posterior-

odds ratio of predictability versus no predictability. Posterior odds for the six size book-to-market

portfolios are presented below:

Portfolio SL SM SH BL BM BH

odds 550 10,886 1,040,000 74 121 1,249

Cross-sectional dispersion in predictability is apparent. The evidence in favor of predictability is the

strongest for small value stocks (SH), the weakest for large growth stocks (BL). Holding book-to-

market fixed, posterior odds in favor of predictability are substantially higher for small-versus-large

capitalization stocks (550 versus 74 for low book-to-market stocks and 1,040,000 versus 1,249 for high

book-to-market stocks). Similarly, controlling for size, posterior odds are higher for high-versus-low

book-to-market stocks (1,040,000 versus 550 for small stocks and 1,249 versus 74 for large stocks).
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B Quarterly Observations

In a recent study, Lettau and Ludvigson (2001) introduce the trend-deviation-in-wealth (henceforth

TDW) as a powerful predictor of quarterly returns at short and intermediate horizons. We examine

the predictive power of TDW and the overall evidence on predictability of three-month holding

period returns using our Bayesian framework. We first construct an additional set of information

variables in which TDW replaces January Dummy.

Drawing on Campbell and Shiller (1988a), Lettau and Ludvigson (2001) argue that TDW sum-

marizes expectations about future stock returns. TDW is computed as ct −wat − (1−w)yt, where

ct, at, and yt denote log consumption, non-human wealth (or asset wealth), and labor income,

respectively and w equals the average share of non-human wealth in total wealth. Consumption,

wealth, and income data are released by the Federal Reserve Board within two months of the end

of a quarter, suggesting that the TDW realization at quarter t is made known to capital market

participants at the subsequent quarter and hence must be used to predict returns realized at or after

quarter t+ 2.

Here are two points that must be noted about TDW. First, the share of non-human wealth in

total wealth, w, is computed based on all the sample containing data realized after the time future

returns are predicted. This raises some difficulties in interpreting the trend-deviation-in-wealth as

a purely ex ante variable, at least from an investment perspective. Second, the estimated weights

on asset wealth (w) and labor income (1-w) do not sum up to unity. Rather, the former is equal to

0.3054 and the latter to 0.5891, thereby summing up to 0.8945 (Lettau and Ludvigson (2001)).

Using quarterly observations, we entertain a new benchmark value for the prior sample size, T0.

Leaving the prior sample size unchanged amounts to weighting priors against predictability to a

stronger degree as the ratio T0

T would increase three times. To maintain this ratio fixed across the

monthly and quarterly experiments, posterior probabilities for the new model space are computed

with T0 taking values equivalent to 17 prior observations per parameter.

Panel A of Table 4 exhibits cumulative posterior probabilities for the new set of predictors. TDW

indeed dominates dividend yield, the market premium, default-risk spread, and term spread, predic-

tive variables studied by Lettau and Ludvigson (2001). TDW outperforms book-to-market, WML,
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HML, and inflation as well. However, its notable challenger is the term premium, which, in some

cases (portfolios SH, BL, and BH) receives higher posterior probabilities. In fact, averaging cumu-

lative posterior probabilities equally across the six portfolios, one finds that the average cumulative

probability pertaining to TDW is approximately 31%, smaller than 34%, the counterpart pertaining

to term premium. Interestingly, SMB better predicts quarterly-versus-monthly returns on large-cap

stocks, whereas HML remains dismal for quarterly observations as well.

Lettau and Ludvigson (2001) address the concern arising due to the fact that the shares of asset

wealth and labor income in total wealth are estimated using the whole sample. They run an analysis

estimating TDW every period, using only data available at the time the forecast is made, thereby

generating 122 out-of-sample observations. We repeat our analysis incorporating these out-of-sample

observations. Cumulative posterior probabilities and highest-posterior-probability compositions are

displayed in Panel B of Table 4.

The analysis shows that the apparent forecasting power of TDW crucially depends upon whether

its coefficients are estimated with or without the “look-ahead” bias. Based on out-of-sample esti-

mates, the predictive power of TDW is dominated by many of the other variables, including divi-

dend yield, book-to-market, and earnings yield. None of the highest-posterior-probability composi-

tions retains the out-of-sample TDW. In contrast, term premium appears in four highest-posterior-

probability compositions (portfolios SH, BL, BM, and BH) and possesses the highest cumulative

posterior probabilities. These range between 25% and 38%.

In the analysis that follows, results for the quarterly sample are based upon the in-sample TDW.

In particular, Table 5 exhibits t-ratios unadjusted (middle figures) and adjusted (bottom figures)

to account for model uncertainty. Again, model uncertainty questions the relevance of economic

variables in forecasting future returns. Term premium and trend deviation in wealth are, in some

cases, close to significant or significant in forecasting quarterly returns based on t-ratios that ignore

model uncertainty, but not when such uncertainty is accounted.

C Bayesian Model Averaging: Out-of-Sample Performance

Thus far, the analysis exhibits evidence supporting in-sample predictability of monthly and quarterly

returns on size book-to-market sorted portfolios. In a related study, Bossaerts and Hillion (1999)
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confirm the presence of predictability using several model selection criteria. However, they discover

that those criteria perform poorly out-of-sample. Is there out-of-sample stock return predictability

based upon Bayesian model averaging?

This section analyzes the properties of forecast errors generated by the weighted model and

other individual models that may have been selected otherwise. A good forecasting model produces

out-of-sample prediction errors satisfying several important properties, including zero mean, zero

serial correlation (if the prediction is one-step-ahead), and zero correlation with the predicted values

(efficiency). These properties are tested using statistics advocated by West and McCracken (1998).

They develop robust regression-based tests corresponding to different schemes often adopted in the

forecasting literature in testing hypothesis about out-of-sample prediction error.

Following West and McCracken (1998), our examination is based upon three schemes. The first,

the rolling (Akgiray (1989)), fixes the estimation window size and drops distant observations as

recent ones are added. To illustrate, the model parameters are first estimated with data from 1

to P (our P corresponds to the first 1
3 sample observations), next with data from 2 to P + 1, . . . ,

and finally with data from T − P to T − 1. The second scheme, the recursive (Fair and Shiller

(1990)), uses all available data in the sense that the model parameters are first estimated based on

data from 1 to P , next with data from 1 to P + 1, . . . , and finally with data from 1 to T − 1.

The third, the fixed scheme (Pagan and Schwert (1990)), estimates the parameters only once and

uses the estimate in forming all subsequent predictions. We examine the three schemes since each

possesses different asymptotic properties. Due to the high dimensionality of the model space, the

out-of-sample examination focuses on a single risky asset, the value-weighted CRSP index.

Table 6 displays several statistics, as explained below. We use these statistics to analyze the prop-

erties of out-of-sample forecast errors generated by several individual models and by the weighted

forecasting model. We study three prior scenarios corresponding to sample size equal to 25, 50, and

100 hypothetical observations per parameter. The set of individual forecasting models consists of

the all-inclusive model (All), the iid model, and five models selected by adjusted R2, AIC, SIC, FIC,

and PIC, all of which are described by Bossaerts and Hillion (1999).

The primary focus is on monthly observations. The quarterly sample produces virtually identical

results, and conveys no additional insights. We report only mean squared errors for the quarterly
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sample corresponding to three prior scenarios, in which T0 is equal to one third of the monthly

counterparts, i.e., T0=8, 17, and 34.

The out-of-sample statistics are MPE, efficiency, serial correlation, and MSE. MPE is the mean

prediction error. Efficiency stands for the estimated slope in the regression of forecast errors on pre-

dicted one-period-ahead returns. Serial correlation expresses the estimated slope in the regression of

current on lagged forecast errors. MSE is the mean squared forecasting error in percent. The quan-

tity ‘t-statistic’ is the corresponding statistic testing the equality of forecast errors, of correlations

with future predicted returns, and of serial correlations to zero.

The out-of-sample forecast errors of models selected by the traditional criteria (along with the

all-inclusive model) display undesirable properties. Forecasts are not efficient; the coefficient in the

regression of forecast errors on forecasted future returns is negative and statistically significant.

Moreover, based on the fixed scheme, out-of-sample forecast errors posses non-zero means and are

serially correlated.

Focusing on the monthly sample, the MSE’s for the iid model are 0.2155, 0.2155, and 0.2162

based on the rolling, recursive, and fixed schemes, respectively. A similar quantity for the optimally

selected models is higher. It ranges between 0.2298 and 0.2339 based on the rolling scheme, between

0.2189 and 0.2260 based on the recursive scheme, and between 0.2371 and 0.5111 based on the fixed

scheme. Similar results are obtained for quarterly observations as well. In sum, model selection

criteria detect no out-of-sample predictability and display poor out-of-sample performance. These

are consistent with Bossaerts and Hillion (1999).

In contrast, the analysis shows that Bayesian model averaging has an impressive out-of-sample

performance. In most cases, it produces zero mean forecasting errors, zero correlations between

forecast errors and predicted future returns, and zero serial correlations. There is one exception,

however. Based on the fixed scheme, Bayesian model averaging fails the test of efficiency, generating

t ratios ranging between -3.9771 and -4.0433, depending on the prior specification.

The striking result is that for every prior scenario, for every examined scheme, and for both the

monthly and quarterly samples, Bayesian model averaging produces mean squared errors smaller

than those corresponding to the iid model. These superior results are consistent with out-of-sample

return predictability. Specifically, focusing on the monthly sample, mean squared errors generated
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by Bayesian model averaging range between 0.2137 and 0.2141 based on the rolling scheme, between

0.2133 and 0.2143 based on the recursive scheme, and between 0.2113 and 0.2133 based on the fixed

scheme. Those are the smallest mean squared errors across the various forecasting models.

Notice that Cremers (2000) also displays several out-of-sample measures for optimally selected

forecasting models, focusing on the recursive scheme. However, he does not conduct formal statistical

hypothesis testing, as is done in Table 6. As we do, he also finds evidence supporting out-of-sample

return predictability. Our findings are mutually consistent.

V Variance Decomposition and Asset Allocation

A Variance Decomposition

We perform the variance decomposition of predicted future stock returns into the three components:

model risk, estimation risk, and uncertainty attributed to forecast errors. The decomposition is based

on current values of predictive variables (zT ) equal to actual end-of-sample realizations. We examine

both the monthly and quarterly samples. For each sample, we analyze three prior specifications.

Results are displayed in Table 7.

Based on monthly observations and T0 = 50, we show that for a single-period investor, the

average (across portfolios) contributions of the three components to the overall uncertainty about

predicted returns are 3.5%, 2.7%, and 93.8%, respectively. Based on quarterly observations and

T0 = 17, such results are 9.5%, 6%, and 84.5%, respectively. Model uncertainty is larger than

parameter uncertainty. Similar results are obtained for the other prior specifications.

Our conclusion about the importance of model uncertainty differs from the one suggested by

Pastor and Stambaugh (1999). They estimate cost of equity capital and show that uncertainty

about which asset pricing model to use is less important, on average, than within-model parameter

uncertainty. In their exercise, Pastor and Stambaugh (1999) identify a large uncertainty about

the equity premium, which inflates their within-model uncertainty. In this study no premium is

estimated. The uncertainty about the equity premium can play a potentially important role in

explaining the difference in conclusions.

What drives the magnitude of model uncertainty? As shown in (24), model uncertainty becomes
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more prominent the greater the dispersion of forecasted conditional expected returns across the

models. This dispersion crucially depends upon the deviation of most recent values of the predictive

variables from their historical means. As an extreme example, if such values are equal to their

historical means, conditional expected returns are identical across models, and the model uncertainty

component becomes nonexistent. At the end-of-sample period the current values of variables that

are perceived to have been indicators of fundamental values, such as book-to-market, dividend yield,

earnings yield, and trend-deviation-in-wealth deviate substantially from their sample means, giving

rise to the greater impact of model uncertainty. The table below displays such deviations:

Predictive Level as of Sample Moments

Variable December 31, 1998 Mean StDev

BM 0.1178 0.5078 0.1790

Div 0.0155 0.0363 0.0094

EY 0.3907 0.8531 0.2936

TDW 0.5716 0.6052 0.0111

The current values of book-to-market, dividend yield, earnings yield, and TDW are between 1.57

(earnings yield) and 3.03 (TDW) standard deviations away from their corresponding sample means.

What are the implications of the sample size for both model and parameter risks? Higher

frequency data provides substantially more information about the variance. Therefore, with fewer

observations both parameter and model risks are expected to increase, and they do.5 Based on

monthly observations, model and parameter risks account altogether (on average using T0 = 50)

for only 6.2% of the total uncertainty about future stock returns, whereas based on the quarterly

counterpart, they account (on average using T0 = 17) for a considerably larger fraction, 15.5%.

What are the implications of the investment horizon for model-versus-parameter risks? Para-

meter uncertainty increases with the investment horizon, as shown by Barberis (2000). In longer

horizons, predictive variables revert to their long-run means, making conditional expected stock

returns look similar across the various forecasting models. The total predictive variance attributed

5The impact of the sample size on parameter uncertainty is illustrated in a simple fashion when stock returns

follow the iid process, i.e., rt = µ + ut with ut ∼ N(0,σ2). The total variance of each period return is given by

var(rt) = var(µ) + σ2. Standard results imply that the parameter uncertainty component, var(µ), is equal to σ2

T
.

That is, parameter uncertainty increases linearly with any reduction in the sample size.
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to model uncertainty will, therefore, converge to a fixed quantity. Consequently, the annualized

predictive variance, obtained by dividing the fixed quantity by the horizon length, will diminish

with an increasing horizon. One can therefore expect that short investment horizons provide a lower

bound on the ratio obtained by dividing parameter uncertainty by model uncertainty.

B Asset Allocation

Using the framework derived in Section II, we compute asset allocations when the current values of

predictive variables (zT ) are equal to the actual end-of-sample realizations. We focus on the monthly

sample (the quarterly provides no additional insights) and study three prior scenarios corresponding

to 25, 50, and 100 hypothetical observations per parameter. We also examine asset allocations when

the current values of predictive variables are equal to historical means, focusing on T0 = 50. The

buy-and-hold investment horizons range between one and ten years. As in Stambaugh (1999), the

relative risk-aversion coefficient is equal to 7. Table 8 exhibits allocation to six size book-to-market

portfolios, total allocation to equities (Total), and a utility loss.

This utility loss provides an economic metric for gauging the effect of ignoring model uncertainty.

This metric is inspired by several recent studies, including Kandel and Stambaugh (1996) and Pastor

and Stambaugh (2000). It summarizes the loss perceived by investors who are forced to ignore model

uncertainty and, instead, allocate funds based on individual models that may have been selected

otherwise. The set of individual models consists of the all-inclusive model and five other models

selected by adjusted R2, AIC, SIC, FIC, and PIC, all of which are described by Bossaerts and Hillion

(1999). A utility loss is computed as the difference between two risk free certainty equivalent rates

CE∗ − CEMj , where

CE∗ = {(1− γ)E [U (WT+K(ω
∗))]} 1

H(1−γ) , (28)

CEMj =
©
(1− γ)E £U ¡WT+K(ω

Mj )
¢¤ª 1

H(1−γ) , (29)

H is the horizon length in years, E is the expected value operator taken with respect to the weighted

predictive distribution, ω∗ and ωMj are optimal allocations to equities based on the weighted model

and each of the above-described single models, respectively.

Asset allocations under model uncertainty deliver three interesting observations. First, given
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short sell constraints investors allocate funds only to small-cap value stocks and large-cap value

stocks. Second, investors do not allocate more to equities the longer their horizons. Focusing on zT

equal to sample means, one-year and ten-year buy-and-hold investment horizons correspond to 65%

and 64% of wealth invested in equities, respectively. Third, the utility loss is economically significant.

Focusing on T0 = 50 and zT equal to end-of-sample actual realizations, it ranges between 1.75%

and 4.37% based on the all-inclusive model, between 1.23% and 2.13% based on adjusted R2, and

between 1.71% to 3.71% based on SIC.

Centering zT around sample means should considerably mitigate the impact of model uncertainty,

and it does. Based on this scenario, expected returns are forced to be constant across models and

along the investment horizon within any model. However, even when current values are equal sample

means, the annual utility loss is non negligible. It ranges between 0.15% and 0.24% based on the

all-inclusive model and between 0.27% and 0.32% based on SIC. When expected future returns are

forced to be equal across models the utility loss is attributed primarily to second moments, which

differ across the models.

We document no horizon effect, whereas Barberis (2000) shows that investors do allocate substan-

tially more to stocks the longer their horizon. Holding expected returns constant over the horizon,

Barberis (2000, pp. 244-245) shows that a necessary (not sufficient) condition for the horizon effect

is a negative covariance between unexpected returns and innovations in dividend yield. This could

lead to a diminishing predicted variance over the investment horizon, thereby making stocks more

attractive. Barberis proposes a strong economic intuition for such mean reversion when returns are

predictable.

To understand the absence of horizon effect in our study, we refer the readers to Table 1. The

evidence shows that covariances between unexpected returns and shocks to predictive variables are

negative for dividend yield and several other economic variables. However, these ‘negative covariance’

variables are not among the highest-posterior-probability predictors. Rather, the weighted model is

biased in favor of term premium and market premium. Both variables exhibit positive covariances,

leading to an increasing perceived variance of future returns over the investment horizon, thereby

making equities appear less attractive for longer-horizon investors.

The disappearance of the horizon effect documented here is consistent with Heaton and Lucas
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(2000) and Ameriks and Zeldes (2000) who show that older people (probably shorter horizon in-

vestors) could hold more in stocks than younger cohorts. Interestingly, Ameriks and Zeldes (2000)

also show that almost half of their sample members made no active changes to their portfolio allo-

cation, i.e., those are buy-and-hold investors similar to the ones examined in our study.

VI Conclusion

In this article, we have implemented a Bayesian model averaging approach to analyze the sample

evidence on return predictability in the presence of model uncertainty. Furthermore, we study the

implications of model uncertainty from investment perspectives. We obtain the following general

results. First, a model that averages across various return generating processes displays robust prop-

erties. Specifically, it produces zero mean out-of-sample forecast errors that are serially uncorrelated

over time.

Second, the evidence supports both in-sample and out-of-sample return predictability. However,

our results show that incorporating model uncertainty can weaken the predictive power of economic

variables. Third, our analysis suggests that the predictive power of term premium and the market

risk premium is comparatively superior to other predictors. In particular, trend-deviation-in-wealth

is a robust predictor of quarterly returns only if the shares of non-human wealth and labor income

are computed based on quantities observed after the prediction is made. Fourth, model uncer-

tainty appears more significant than estimation risk. Finally, buy-and-hold asset allocations exhibit

sensitivity to whether model uncertainty is omitted or incorporated in the portfolio choice.

There are several natural extensions to our analysis. First, it can be used to examine return

predictability in the context of international equity pricing models. It can be modified to study

predictability of future economic activity. One can also examine the extent to which bond mar-

ket returns are predictable. Second, our Bayesian approach is sufficiently flexible to examine the

performance of non-nested models. For example, one can compute the posterior probabilities for

the GARCH model and the stochastic volatility model, and arrive at an optimal composite model.

Third, while not done here, the normative implications of asset allocation decisions under model

uncertainty deserves further research. The Bayesian framework is especially suited for addressing
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this issue. Finally, it can be argued that investors will require an extra premium to compensate

for model uncertainty. Studying the equity premium in a framework that accommodates model

uncertainty may be a worthy objective. Much more work needs to be done on model uncertainty.
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Appendix: Proof of Results and Data Description

A The Marginal Likelihood

All quantities based on the hypothetical sample, denoted by the subscript 0, are expressed in terms of

quantities observed from the actual sample. Specifically (the model-specific-subscript is suppressed

for notational clarity):

1

T0
(X 0

0X0) =
1

T
(X 0X) =

 1 z̄0

z̄ z̄z̄0 + V̂z

 , (A.1)

X 0
0R0 = (X 0

0X0)B0, (A.2)

=
T0
T
(X 0X)

 r̄0

0

 ,

= T0

 r̄0

z̄r̄0

 .
The joint posterior distribution of B and Σ based on the hypothetical sample constitutes the

prior distribution for the primary sample. Assuming the standard noninformative prior P (B,Σ) ∝

|Σ|−N+1
2 before observing the hypothetical sample, we obtain

P (B,Σ|D0) ∝ |Σ|−
T0+N+1

2 exp

µ
−1
2
tr [S0 + (B −B0)0X 0

0X0(B −B0)]Σ−1
¶
, (A.3)

where

S0 = (R0 −X0B0)0(R0 −X0B0), (A.4)

= (R0 − ιT0 r̄)
0(R0 − ιT0 r̄),

= T0V̂r,

and ιT0 is a T0 × 1 vector of ones. Standard results (e.g., Zellner (1971)) imply that Σ obeys

the inverted Wishart distribution with a parameter matrix S0 and T0 −m− 1 degrees of freedom.

Conditional on Σ, the vector b = vec(B) is multivariate normally distributed with mean b0 = vec(B0)

and variance Σ⊗ (X 0X)−1. The priors for B and Σ can be expresses as

P
¡
b|Σ¢ = (2π)−

N(m+1)
2 |Σ⊗ (X 0

0X0)
−1|−m+1

2 exp

µ
−1
2

¡
b− b0

¢0£
Σ−1 ⊗X 0

0X0
¤
(b− b0

¢¶
,(A.5)

P
¡
Σ
¢
= ψ0|S0|

T0−m−1
2 |Σ|−T0+N−m

2 exp

µ
−1
2
tr
£
S0Σ

−1¤¶ ,
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where

ψ0 =

Ã
2

(T0−m−1)N
2 π

N(N−1)
4

NY
i=1

Γ

∙
T0 −m− i

2

¸!−1
. (A.6)

The likelihood function (the one that integrates to unity) of normally distributed data consti-

tuting the actual sample obeys the form:

P (D|B,Σ) = (2π)−TN
2 |Σ|−T

2 exp

µ
−1
2
tr
h
S + (B − B̂)0X 0X(B − B̂)

i
Σ−1

¶
, (A.7)

where S = (R−XB̂)0(R−XB̂) and B̂ = (X 0X)−1X 0R.

Combining the likelihood (A.7) and the prior (A.3) and completing the square on b yield

P
¡
b|Σ,D¢ = (2π)−

N(m+1)
2 |Σ⊗ (X 0

0X0 +X
0X)−1|−m+1

2 (A.8)

× exp

µ
−1
2

¡
b− b̃¢0£Σ−1 ⊗ (X 0

0X0 +X
0X)

¤¡
b− b̃¢¶ ,

P
¡
Σ|D¢ = ψ|S̃| ν2 |Σ|− ν+N+1

2 exp

µ
−1
2
tr
£
S̃Σ−1

¤¶
,

where

b̃ = vec(B̃),

B̃ = (X 0
0X0 +X

0X)−1(X 0
0R0 +X

0R),

S̃ = R0R+ S0 +R00X0(X
0
0X0)

−1X 0
0R0 − B̃0(X 0

0X0 +X
0X)B̃,

ψ =

Ã
2
νN

2 π
N(N−1)

4

NY
i=1

Γ

∙
ν + 1− i

2

¸!−1
,

ν = T0 + T −m− 1.

Computing the log marginal likelihood is as follows. Take logs from both sides of (9) and

replace the prior, likelihood, and posterior densities in (A.5), (A.7), and (A.8), respectively, by their

corresponding normalization constants.

B The Joint Posterior Distribution of Φ and Ψ

To derive the posterior distribution of Φ and Ψ, we follow Kandel and Stambaugh (1996) and

assume that the prior sample produces the same values as the actual counterpart for the statistics

corresponding to ρ and z̃, where

ρ =
1

T

T−1X
t=0

(zt − z̄)(zt+1 − z̃)0 (B.1)

24



is the matrix of autocorrelation and cross autocorrelation of m predetermined variables and z̃ =

1
T

PT
t=1 zt. The joint posterior distribution of Φ and Ψ is given by

vec(Φ)|Ψ ∼ N ¡vec(Φ0),Ψ⊗ (X 0
0X0)

−1¢ , (B.2)

Ψ ∼ IW (Ψ0, T0 − (N +m)− 1) ,

where

Φ0 = (X 0
0X0)

−1(X 0
0Y0),

=
£
B0, (X

0
0X0)

−1(X 0
0Z0)

¤
,

X 0
0Z0 = T0

 z̃0

ρ+ z̄z̃0

 ,

Ψ0 ≈ T0

 V̂r V

V V̂z + z̃z̃
0 − 1

T0
Z00X0(X

0
0X0)

−1X 0
0Z0

 .
The approximation becomes equality if the first and last observations of the predictive variables

are equal. The off-diagonal matrix V is assumed zero. Combining the joint prior distribution in

(B.2) with normally distributed data constituting the primary sample, the posterior distributions

for φ = vec(Φ) and Ψ are obtained as

φ|Ψ, D ∼ N
³
φ̃,Ψ⊗ (X 0

0X0 +X
0X)−1

´
, (B.3)

Ψ|D ∼ IW
³
Ψ̃, T + T0 − (N +m)− 1

´
,

where

φ̃ = vec(Φ̃),

Φ̃ = (X 0
0X0 +X

0X)−1(X 0
0Y0 +X

0Y ),

Ψ̃ = Y 0Y +Ψ0 + Y 00X0(X
0
0X0)

−1X 0
0Y0 − Φ̃0(X 0

0X0 +X
0X)Φ̃.

C The Conditional Distribution of Future Stock Returns

Partitioning equation (16) yields

(r0t, z
0
t) = (1, z

0
t−1)

 b0 a0

C0 A

+
 ²t

et


0

, (C.1)
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where  ²t

et

 ∼ N

0,
 Σ Λ

Λ0 Φ


 . (C.2)

It follows from equation (C.1) that:

rT+1 = b+ CzT + ²T+1, (C.3)

zT+1 = a+A0zT + eT+1. (C.4)

The cumulative excess log return over the investment horizon is computed as

RT+K =
KX
k=1

rt+k, (C.5)

= Kb+ C

 KX
j=1

zT+j−1

+ KX
j=1

²T+j ,

where zT+j is obtained by iterating over equation (C.4). In particular,

zT+J = [(A
0)J − Im](A0 − Im)−1a+ (A0)JzT +

JX
j=1

(A0)J−jeT+j . (C.6)

Substituting equation (C.6) into equation (C.5) for J = 1, . . . ,K − 1 yields:

RT+K = Kb+ C
£
A0
¡
(A0)K−1 − Im

¢
(A0 − Im)−1 − (K − 1)Im

¤
(A0 − Im)−1a

+ C
¡
(A0)K − Im

¢
(A0 − Im)−1zT +

KX
j=2

j−1X
i=1

C(A0)j−i−1eT+i +
KX
j=1

²T+j ,

for K ≥ 2. The desired result follows immediately.

D Variance Decomposition

Based on Leamer (1978), decomposing the predictive variance Var{RT+K |D} with respect to the

model space and using the law of iterated expectations yield

Var{RT+K |D} =
2MX
j=1

P (Mj |D)
h
Var{RT+K |Mj , D}+ (λ̃− E{λj})(λ̃− E{λj})0

i
. (D.1)

Decomposing the within-model variance yields

Var{RT+K |Mj , D} (D.2)

= E{Var [RT+K |Mj , D,Φ,Ψ]}+Var{E [RT+K |Mj , D,Φ,Ψ]},

= E{Υj}+Var{λj}.
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The three variance components are obtained by substituting the two components of within-model

uncertainty into the corresponding quantity in equation (D.1).

E Data

Data used to compute dividend yield, Treasury bill rate, and market premium are from the Center

for Research in Security Prices (CRSP) at the University of Chicago. Inputs for calculating book-

to-market are obtained from the Standard & Poor’s publication: “Security Price Index Record -

Statistical Service.” Inputs for computing default risk spread are obtained form Citibase. Data on

term premium and default risk premium are from Ibbotson and associates. Returns on size book-to-

market portfolios, size premium, and value premium are from Kenneth French. The winners-minus-

losers portfolio is from Mark Carhart. Earnings and inflation data are from Robert Shiller. Earnings

yield is formed by dividing the most recent twelve-month earnings by the contemporaneous value

of the S&P 500 index. Treasury yields are taken from the Federal Reserve Board. In the quarterly

sample, the trend deviation in wealth replaces January Dummy. In-sample and out-of-sample trend-

deviation-in-wealth are from Martin Lettau and Sydney Ludvigson.

The following table shows descriptive statistics based on the actual sample spanning 549 months

from April 1953 to December 1998 for continuously compounded returns on six equity portfolios and

13 predictors. The portfolios are identified by a combination of two letters designating increasing

values of size (S,B) and book-to-market (L,M,H). The 13 predictors are: dividend yield on the value-

weighted NYSE index (Div); book-to-market (BM) on the Standard & Poor’s Industrials; earnings

yield on the Standard & Poor’s Composite index (EY); the one-year momentum portfolio (WML);

the difference in annualized yields of Moody’s Baa and Aaa rated bonds (Def); the monthly rate of

a three-month Treasury bill (Tbill); excess return on the value-weighted index (RET); the difference

between the return on long-term corporate bonds and the return on long-term government bond

(DEF); the difference between the monthly return on long-term government bond and the one month

Treasury bill rate (TERM); inflation rate (Inf); size premium (SMB); value premium (HML); and

the difference in annualized yield of ten-year and one-year Treasury bills (Term). Std.Dev. denotes

the standard deviation. The parameter ρt is the sample autocorrelation at lag t months.
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Descriptive Statistics of Predictive Variables and Equity Portfolios

Statistic: Mean Std.Dev. ρ1 ρ3 ρ6 ρ12 ρ60

Predictive Variables:

Div 0.0362 0.0091 0.9828 0.9478 0.8847 0.7620 0.3276

BM 0.5048 0.1735 0.9889 0.9674 0.9304 0.8572 0.4912

EY 0.8531 0.2936 0.9929 0.9679 0.9162 0.7981 0.3638

WML 0.0097 0.0357 -0.0377 -0.1016 0.0706 0.2347 0.2293

Def 0.9476 0.4385 0.9738 0.9106 0.8360 0.6941 0.3859

Tbill 0.0044 0.0024 0.9565 0.9113 0.8638 0.7818 0.4258

RET 0.0063 0.0423 0.0655 0.0041 -0.0650 0.0312 -0.0504

DEF 0.0003 0.0115 -0.1881 -0.0493 -0.0434 0.0054 0.0088

TERM 0.0011 0.0263 0.0662 -0.1037 0.0452 -0.0107 -0.0242

Inf 0.3330 0.3334 0.5541 0.4755 0.4416 0.5152 0.2929

SMB 0.0009 0.0262 0.1659 -0.0134 0.0708 0.1871 0.0305

HML 0.0039 0.0244 0.1483 -0.0077 0.0430 0.1013 0.0063

Term 0.7195 0.9908 0.9589 0.8368 0.7033 0.5071 0.0217

Equity Portfolios:

SL 0.0098 0.0614 0.1722 -0.0242 -0.0237 0.0085 -0.0401

SM 0.0130 0.0501 0.1854 -0.0122 -0.0010 0.0694 0.0034

SH 0.0149 0.0509 0.1795 -0.0275 -0.0132 0.1272 0.0482

BL 0.0108 0.0451 0.0571 0.0013 -0.0665 0.0535 -0.0770

BM 0.0110 0.0399 0.0129 0.0127 -0.0660 0.0057 -0.0262

BH 0.0132 0.0434 0.0443 0.0244 -0.0214 0.0544 0.0026

Dividend yield, book-to-market, earnings yield, default spread, Treasury-bill rate, and term

spread display persistence, whereas WML, excess return, default risk premium, term premium,

inflation, size premium, and value premium possess lower or no autocorrelation.
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Table 1
Multiple Regressions of Monthly Excess continuously Compounded Returns on Predictive

Variables

The table exhibits slope coefficients (top figures) and their corresponding t-ratios (middle figures) obtained by re-

gressing excess returns on each of the size book-to-market portfolios on an intercept and 14 lagged predictive variables

described below. Also reported (bottom figures) are covariances between unexpected returns and innovations in pre-

dictive variables, covt(²t+1, η0t+1). (January dummy does not evolve stochastically and therefore such covariances are,

by definition, equal to zero.) Excess returns are on six portfolios formed as the intersection of two size (S,B) and three

book-to-market (L,M,H) groups. The set of predictors includes: dividend yield (Div); book-to-market (BM); earnings

yield (EY); the one-year momentum portfolio (WML); default risk spread (Def); the monthly rate of a three-month

Treasury bill (Tbill); excess return on the value-weighted index (RET); default risk premium (DEF); term premium

(TERM); January Dummy (Jan); inflation rate (Inf); size premium (SMB); value premium (HML); and the term

spread (Term).

Predictive Variables
Div BM EY WML Def Tbill RET DEF TERM Jan Inf SMB HML Term

Portfolio:

SL -0.0129 -0.0018 -0.0655 0.0782 -0.0217 0.0160 -6.7958 0.0191 0.4310 0.3160 0.0238 -0.0138 0.1932 -0.1125
-0.9936 -0.0019 -1.6370 2.5494 -0.2689 1.4745 -3.1139 0.2460 1.6003 2.5537 2.4281 -1.3518 1.7380 -0.9558
-0.0001 -0.0012 -0.0013 -0.0003 0.0001 0.0000 0.0023 0.0001 0.0002 0.0000 -0.0022 0.0010 -0.0006 0.0018

SM -0.0105 -0.1591 -0.0347 0.0568 -0.0228 0.0096 -3.9722 0.0443 0.3254 0.3421 0.0289 -0.0124 0.1285 -0.0014
-1.0145 -0.2096 -1.0873 2.3216 -0.3541 1.1137 -2.2808 0.7173 1.5140 3.4649 3.6917 -1.5155 1.4489 -0.0151
-0.0001 -0.0009 -0.0011 -0.0003 0.0001 0.0000 0.0019 0.0001 0.0002 0.0000 -0.0018 0.0008 -0.0002 0.0023

SH -0.0076 -0.4942 -0.0134 0.0541 -0.0529 0.0061 -3.1236 0.0751 0.2454 0.2948 0.0430 -0.0121 0.1109 0.0860
-0.7334 -0.6525 -0.4214 2.2125 -0.8242 0.7062 -1.7974 1.2177 1.1442 2.9923 5.5041 -1.4885 1.2525 0.9177
-0.0001 -0.0009 -0.0011 -0.0004 0.0000 0.0000 0.0018 0.0001 0.0002 0.0000 -0.0015 0.0008 0.0000 0.0025

BL 0.0018 0.3266 -0.0651 0.0441 -0.0093 0.0124 -4.0756 -0.0795 0.4139 0.2619 -0.0044 -0.0182 0.0720 -0.0790
0.1903 0.4655 -2.2042 1.9495 -0.1562 1.5503 -2.5313 -1.3906 2.0831 2.8686 -0.6045 -2.4023 0.8776 -0.9097
-0.0001 -0.0010 -0.0010 0.0000 0.0001 0.0000 0.0019 0.0000 0.0003 0.0000 -0.0017 0.0002 -0.0005 0.0015

BM -0.0007 0.0759 -0.0466 0.0450 0.0311 0.0113 -4.6298 -0.1034 0.3534 0.2973 0.0079 -0.0090 0.0770 0.0119
-0.0880 0.1234 -1.8025 2.2683 0.5970 1.6157 -3.2827 -2.0659 2.0304 3.7177 1.2495 -1.3552 1.0713 0.1559
-0.0001 -0.0008 -0.0008 0.0000 0.0002 0.0000 0.0016 0.0000 0.0003 0.0000 -0.0013 0.0002 -0.0002 0.0018

BH -0.0027 -0.1280 -0.0114 0.0300 -0.0272 0.0076 -2.7374 -0.0566 0.2117 0.2170 0.0268 -0.0124 0.0264 0.0249
-0.2999 -0.1935 -0.4085 1.4055 -0.4852 1.0097 -1.8032 -1.0504 1.1300 2.5207 3.9225 -1.7372 0.3409 0.3037
-0.0001 -0.0008 -0.0008 -0.0002 0.0001 0.0000 0.0016 0.0000 0.0003 0.0000 -0.0014 0.0003 0.0001 0.0020
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Table 2

Posterior Probabilities of Forecasting Models Based on a Prior Sample Weighted against
Predictability

The top figures display cumulative posterior probabilities computed as A0P, where A is a 214×14 matrix representing
all forecasting models by their unique combinations of zeros and ones and P is a 214 × 1 vector including posterior
probabilities for all models. The bottom figures denote the highest-posterior probability compositions represented by
a combination of zeros and ones designating exclusions and inclusions of predictive variables, respectively. The stock
universe comprises six portfolios identified by two letters designating increasing values of size (S, B) and book-to-
market (L, M, H). Following are the predictors spanning the information set: dividend yield (Div); book-to-market
(BM); earnings yield (EY); the momentum portfolio (WML); the difference in annualized yields of Moody’s Baa and
Aaa rated bonds (Def); the monthly rate of a three-month Treasury bill (Tbill); excess return on the value-weighted
index (RET); the difference between the return on long-term corporate bonds and the return on long-term government
bond (DEF); the difference between the monthly return on long-term government bond and the one month Treasury
bill rate (TERM); January Dummy (Jan); inflation rate (Inf); size premium (SMB); value premium (HML); and the
difference in annualized yield of ten-year and one-year Treasury bills (Term). Figures displayed below are computed
when investors encounter a hypothetical sample weighted against predictability.

Predictive Variables
Div BM EY WML Def Tbill RET DEF TERM Jan Inf SMB HML Term

Portfolio:

SL 0.20 0.08 0.38 0.02 0.14 0.28 0.48 0.04 0.12 0.21 0.31 0.16 0.05 0.08
0 0 1 0 0 0 0 0 0 0 1 0 0 0

SM 0.12 0.06 0.16 0.02 0.10 0.09 0.40 0.06 0.54 0.77 0.15 0.12 0.02 0.19
0 0 0 0 0 0 0 0 1 1 0 0 0 0

SH 0.06 0.05 0.07 0.03 0.06 0.04 0.49 0.03 0.35 1.00 0.06 0.08 0.02 0.22
0 0 0 0 0 0 1 0 0 1 0 0 0 0

BL 0.12 0.05 0.14 0.04 0.14 0.13 0.05 0.07 0.20 0.03 0.69 0.05 0.05 0.15
0 0 0 0 0 0 0 0 0 0 1 0 0 0

BM 0.15 0.06 0.15 0.03 0.20 0.34 0.03 0.09 0.54 0.07 0.23 0.04 0.03 0.25
0 0 0 0 0 0 0 0 1 0 0 0 0 0

BH 0.07 0.06 0.06 0.03 0.09 0.09 0.02 0.03 0.17 0.92 0.21 0.02 0.02 0.47
0 0 0 0 0 0 0 0 0 1 0 0 0 1
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Table 3

Slope Coefficients in the Weighted Model and Posterior t-Ratios

The top figures denote posterior means of slope coefficients obtained by averaging slope estimates across models:

E(B|D) =
2MX
j=1

P (Mj |D) B̃j .

The middle and bottom figures denote t-ratios unadjusted and adjusted to account for model uncertainty, respectively.
In particular, the former is obtained by dividing the posterior mean of each of the slope coefficients by its posterior
standard error corresponding to the first variance component in the following equation:

Var(B|D) =
2MX
j=1

P (Mj |D)
(
T S̃j(X

0
jXj)

−1

T ∗j (T
∗
j − 4)

+
h
B̃j − E(B|D)

i h
B̃j − E(B|D)

i0)
.

The latter divides the posterior mean by the posterior standard error corresponding to the overall variance, including
model uncertainty that summarizes the dispersion in slopes across models. The statistics are computed separately
for each of six equity portfolios formed as the intersection of two size (S, B) and three book-to-market (L, M, H)
groups. Following are the predictors spanning the information set: dividend yield (Div); book-to-market (BM);
earnings yield (EY); the momentum portfolio (WML); the difference in annualized yields of Moody’s Baa and Aaa
rated bonds (Def); the monthly rate of a three-month Treasury bill (Tbill); excess return on the value-weighted index
(RET); the difference between the return on long-term corporate bonds and the return on long-term government
bond (DEF); the difference between the monthly return on long-term government bond and the one month Treasury
bill rate (TERM); January Dummy (Jan); inflation rate (Inf); size premium (SMB); value premium (HML); and the
difference in annualized yield of ten-year and one-year Treasury bills (Term). Figures displayed below are computed
when investors encounter a hypothetical sample weighted against predictability.

Predictive Variables
Div BM EY WML Def Tbill RET DEF TERM Jan Inf SMB HML Term

Portfolio:

SL 0.13 0.00 0.01 0.00 0.00 -0.96 0.08 0.01 0.02 0.00 -0.01 0.03 -0.01 0.00
0.99 0.22 1.79 -0.05 0.96 -1.53 2.01 0.23 0.72 1.05 -1.60 0.87 -0.28 0.50
0.43 0.11 0.69 -0.05 0.34 -0.55 0.85 0.14 0.32 0.47 -0.60 0.38 -0.17 0.25

SM 0.06 0.00 0.00 0.00 0.00 -0.22 0.05 0.02 0.12 0.02 0.00 0.02 0.00 0.00
0.75 0.38 1.04 -0.12 0.81 -0.77 1.93 0.46 2.37 2.89 -1.05 0.80 -0.04 1.10
0.32 0.19 0.39 -0.09 0.28 -0.28 0.74 0.21 0.97 1.54 -0.38 0.34 -0.04 0.44

SH 0.02 0.00 0.00 0.00 0.00 -0.09 0.07 0.01 0.07 0.03 0.00 0.01 0.00 0.00
0.44 0.39 0.57 -0.24 0.53 -0.47 2.22 0.24 1.77 4.69 -0.49 0.61 0.11 1.25
0.21 0.19 0.24 -0.14 0.20 -0.18 0.89 0.12 0.67 4.48 -0.21 0.26 0.08 0.48

BL 0.04 0.00 0.00 0.00 0.00 -0.24 0.00 0.02 0.03 0.00 -0.01 0.00 0.00 0.00
0.57 0.04 0.65 -0.10 0.77 -0.79 0.19 0.39 0.94 -0.06 -2.53 0.24 -0.18 0.74
0.30 0.02 0.33 -0.09 0.34 -0.32 0.14 0.21 0.43 -0.05 -1.26 0.17 -0.14 0.35

BM 0.06 0.00 0.00 0.00 0.00 -0.73 0.00 0.02 0.08 0.00 0.00 0.00 0.00 0.00
0.76 0.21 0.79 0.05 1.16 -1.68 0.00 0.51 2.04 0.36 -1.16 0.16 0.02 1.19
0.36 0.13 0.35 0.05 0.43 -0.62 0.00 0.25 0.93 0.21 -0.48 0.12 0.02 0.51

BH 0.02 0.00 0.00 0.00 0.00 -0.15 0.00 0.00 0.02 0.02 0.00 0.00 0.00 0.00
0.44 0.35 0.37 -0.10 0.63 -0.65 0.08 0.09 0.88 3.39 -1.16 0.09 0.06 1.91
0.23 0.20 0.19 -0.08 0.25 -0.26 0.07 0.07 0.40 2.36 -0.46 0.08 0.06 0.84
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Table 4

Posterior Probabilities of Forecasting Models Using Quarterly Observations

In both panels, top figures display cumulative posterior probabilities computed as A0P, where A is a 214 × 14 matrix
representing all forecasting models by their unique combinations of zeros and ones and P is a 214× 1 vector including
posterior probabilities for all models. Bottom figures denote highest-posterior probability compositions represented
by a combination of zeros and ones designating exclusions and inclusions of predictive variables, respectively. The
stock universe comprises six portfolios identified by two letters designating increasing values of size (S, B) and book-
to-market (L, M, H). Following are the predictive variables: dividend yield (Div); book-to-market (BM); earnings
yield (EY); momentum (WML); the difference in annualized yields of Moody’s Baa and Aaa rated bonds (Def); the
monthly rate of a three-month Treasury bill (Tbill); excess return on the value-weighted index (RET); the difference
between the return on long-term corporate bonds and the return on long-term government bond (DEF); the difference
between the monthly return on long-term government bond and the one month Treasury bill rate (TERM); trend-
deviation-in-wealth (TDW), inflation rate (Inf); size premium (SMB); value premium (HML); and the difference in
annualized yield of ten-year and one-year Treasury bills (Term). The TDW is first estimated with the “look-ahead”
bias using the full sample (Panel A) and then using one-quarter ahead out-of-sample forecasts (Panel B).

Predictive Variables
Div BM EY WML Def Tbill RET DEF TERM TDW Inf SMB HML Term

Panel A: TDW is estimated using the full sample, i.e., with the “look-ahead” bias

Portfolio:

SL 0.22 0.09 0.26 0.07 0.07 0.30 0.04 0.12 0.35 0.36 0.04 0.08 0.04 0.07
0 0 0 0 0 0 0 0 0 1 0 0 0 0

SM 0.18 0.08 0.15 0.07 0.09 0.14 0.06 0.14 0.40 0.47 0.04 0.11 0.04 0.13
0 0 0 0 0 0 0 0 0 1 0 0 0 0

SH 0.16 0.10 0.15 0.08 0.11 0.14 0.10 0.14 0.47 0.25 0.05 0.10 0.04 0.16
0 0 0 0 0 0 0 0 1 0 0 0 0 0

BL 0.12 0.06 0.08 0.05 0.08 0.22 0.06 0.13 0.33 0.21 0.06 0.23 0.04 0.13
0 0 0 0 0 0 0 0 1 0 0 0 0 0

BM 0.19 0.07 0.16 0.04 0.17 0.41 0.05 0.06 0.21 0.31 0.06 0.15 0.04 0.17
0 0 0 0 0 0 0 0 0 1 0 0 0 0

BH 0.12 0.08 0.09 0.04 0.15 0.21 0.15 0.09 0.26 0.25 0.08 0.21 0.04 0.22
0 0 0 0 0 0 0 0 0 1 0 0 0 0

Panel B: TDW is estimated using one-quarter-ahead out-of-sample forecasts

Portfolio:

SL 0.31 0.12 0.37 0.13 0.12 0.36 0.08 0.14 0.32 0.12 0.08 0.20 0.07 0.20
0 0 1 0 0 1 0 0 0 0 0 0 0 0

SM 0.28 0.12 0.32 0.12 0.18 0.21 0.08 0.14 0.32 0.11 0.08 0.21 0.07 0.35
0 0 1 0 0 0 0 0 0 0 0 0 0 1

SH 0.24 0.12 0.28 0.13 0.18 0.18 0.09 0.14 0.38 0.10 0.08 0.21 0.07 0.30
0 0 0 0 0 0 0 0 1 0 0 0 0 0

BL 0.14 0.11 0.15 0.09 0.13 0.15 0.10 0.18 0.30 0.18 0.09 0.21 0.09 0.16
0 0 0 0 0 0 0 0 1 0 0 0 0 0

BM 0.19 0.11 0.20 0.09 0.16 0.26 0.10 0.13 0.25 0.12 0.10 0.15 0.09 0.24
0 0 0 0 0 0 0 0 1 0 0 0 0 0

BH 0.14 0.10 0.14 0.10 0.23 0.14 0.11 0.13 0.29 0.10 0.10 0.26 0.08 0.23
0 0 0 0 0 0 0 0 1 0 0 0 0 0
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Table 5

Slope Coefficients in the Weighted Model and Posterior t-Ratios: The case of Quarterly
Observations

The top figures denote posterior means of slope coefficients obtained by averaging slope estimates across models:

E(B|D) =
2MX
j=1

P (Mj |D) B̃j .

The middle and bottom figures denote t-ratios unadjusted and adjusted to account for model uncertainty, respectively.
In particular, the former is obtained by dividing the posterior mean of each of the slope coefficients obtained by
averaging slope estimates across models by the posterior standard error corresponding to the first variance component
in the following equation:

Var(B|D) =
2MX
j=1

P (Mj |D)
(
T S̃j(X

0
jXj)

−1

T ∗j (T
∗
j − 4)

+
h
B̃j − E(B|D)

i h
B̃j − E(B|D)

i0)
.

The latter divides the posterior mean by the posterior standard error corresponding to the overall variance, includ-
ing model uncertainty that summarizes the dispersion in slopes across models. The hypothetical no-predictability
informative sample takes values equivalent to 17 observations per parameter. The statistics are computed separately
for each of six equity portfolios formed as the intersection of two size (S, B) and three book-to-market (L, M, H)
groups. Following are the predictors constituting the information set: dividend yield (Div); book-to-market (BM);
earnings yield (EY); momentum (WML); default risk spread (Def); the three-month rate of a three-month Treasury
bill (Tbill); a quarterly excess return on the value-weighted index (RET); default risk premium (DEF); term premium
(TERM); trend deviation in wealth (TDW); the three-month inflation rate (Inf); size premium (SMB); value premium
(HML); and the term spread (Term). Figures displayed below are computed when investors perceive the events of
predictability versus no predictability as equally likely prior to encountering a hypothetical sample weighted against
predictability.

Predictive Variables
Div BM EY WML Def Tbill RET DEF TERM TDW Inf SMB HML Term

Portfolio:

SL 0.45 0.00 0.02 0.01 0.00 -0.82 0.00 0.08 0.13 0.86 0.00 -0.01 0.00 0.00
1.03 0.30 1.24 0.28 0.31 -1.27 0.10 0.53 1.39 1.76 -0.09 -0.33 -0.08 0.29
0.42 0.16 0.42 0.16 0.14 -0.45 0.07 0.24 0.57 0.73 -0.06 -0.18 -0.07 0.16

SM 0.23 0.00 0.01 0.01 0.00 -0.22 0.00 0.08 0.13 0.98 0.00 -0.01 0.00 0.00
0.80 0.34 0.68 0.29 0.53 -0.66 0.21 0.64 1.63 2.15 -0.12 -0.45 -0.09 0.66
0.34 0.18 0.27 0.16 0.20 -0.25 0.12 0.27 0.66 0.92 -0.08 -0.22 -0.07 0.28

SH 0.18 0.00 0.01 0.01 0.00 -0.23 0.01 0.10 0.19 0.39 0.00 -0.01 0.00 0.00
0.68 0.43 0.62 0.32 0.62 -0.66 0.45 0.68 1.94 1.22 -0.12 -0.38 -0.07 0.79
0.31 0.22 0.27 0.18 0.23 -0.25 0.21 0.29 0.82 0.51 -0.08 -0.20 -0.06 0.33

BL 0.08 0.00 0.00 0.00 0.00 -0.29 0.00 0.06 0.08 0.20 0.00 -0.04 0.00 0.00
0.40 0.02 0.23 -0.02 0.31 -0.81 0.15 0.51 1.27 0.88 -0.20 -0.81 -0.04 0.58
0.21 0.01 0.13 -0.02 0.15 -0.35 0.11 0.25 0.56 0.41 -0.13 -0.38 -0.04 0.29

BM 0.18 0.00 0.00 0.00 0.00 -0.79 0.00 0.01 0.04 0.39 0.00 -0.02 0.00 0.00
0.82 0.16 0.74 0.04 0.97 -1.70 0.20 0.23 0.92 1.51 -0.24 -0.58 -0.08 0.87
0.34 0.09 0.29 0.04 0.34 -0.59 0.12 0.13 0.40 0.63 -0.13 -0.28 -0.07 0.37

BH 0.08 0.00 0.00 0.00 0.00 -0.36 0.02 0.03 0.06 0.28 0.00 -0.03 0.00 0.00
0.45 0.28 0.30 0.06 0.85 -0.99 0.67 0.40 1.18 1.16 -0.33 -0.77 0.01 1.08
0.23 0.16 0.16 0.05 0.29 -0.35 0.28 0.20 0.50 0.50 -0.17 -0.34 0.01 0.46
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Table 6

Bayesian Model Averaging: External Validity

The table displays several statistics examining the properties of out-of-sample monthly forecast errors generated by
several return-generating processes and the weighted forecasting model. The former set includes the all-inclusive
model (All), the iid model (iid), and five models selected by adjusted R2, AIC, SIC, FIC, and PIC, all of which are
described by Bossaerts and Hillion (1999). We examine three prior specifications corresponding to a hypothetical
sample size equal to 50, 100, and 25 observations per parameter. MPE is the mean forecast error. Efficiency stands
for the estimated slope in the regression of forecast errors on predicted one-period-ahead returns. Serial correlation
expresses the estimated slope in the regression of current on lagged forecast errors. The quantities t-statistic’s are
the corresponding statistics testing the equality of the forecast errors, of the correlation between forecast errors and
future predicted returns (efficiency), and of serial correlations to zero. MSE is the mean squared error in percent. We
adopt three different schemes having distinct asymptotic properties. The rolling scheme fixes the estimation window
size and drops distant observations as recent ones are added. The recursive scheme uses all available data. The fixed
scheme estimates the parameters only once and uses the estimate in forming all the subsequent predictions. The
bottom part of the table displays mean squared errors for the quarterly sample corresponding to three prior scenarios,
in which the number of hypothetical observations is equal to one third of the monthly counterparts, i.e., T0=17, 33,
and 8.

T0 = 50 T0 = 100 T0 = 25 All iid Adj R2 AIC SIC FIC PIC

The Rolling Scheme — Monthly Sample

MPE 0.0006 0.0007 0.0003 -0.0006 0.0007 -0.0002 0.0000 -0.0023 0.0001 -0.0003
t-statistic 0.4225 0.4944 0.2368 -0.3874 0.5126 -0.1551 0.0176 -1.5588 0.0365 -0.2117
Efficiency -0.0563 -0.0287 -0.2335 -0.7874 -0.4371 -0.7642 -0.7919 -0.9454 -0.8709 -0.7926
t-statistic -0.1788 -0.0863 -0.8557 -7.8065 -1.3761 -7.4691 -6.9512 -7.9715 -7.4193 -7.2763
Serial Correlation 0.0397 0.0499 0.0323 -0.0284 0.0684 -0.0043 -0.0051 0.0274 -0.0185 -0.0269
t-statistic 0.6676 0.8326 0.5494 -0.4856 1.1288 -0.0738 -0.0895 0.5024 -0.3167 -0.4659
MSE 0.2137 0.2141 0.2139 0.2333 0.2155 0.2309 0.2298 0.2319 0.2339 0.2312

The Recursive Scheme — Monthly Sample

MPE -0.0003 -0.0004 -0.0003 0.0005 -0.0010 0.0007 0.0012 0.0013 0.0028 0.0020
t-statistic -0.1049 -0.1659 -0.1421 0.1847 -0.3924 0.3018 0.5103 0.5099 1.1455 0.8152
Efficiency -0.2357 -0.1047 -0.4018 -0.6708 -0.4500 -0.5959 -0.5804 -0.7953 -0.7319 -0.7300
t-statistic -0.6675 -0.2572 -1.3455 -3.0407 -0.9504 -2.8158 -2.7292 -3.7994 -3.0175 -2.9242
Serial Correlation 0.0401 0.0489 0.0372 0.0036 0.0706 0.0144 0.0143 0.0417 0.0144 0.0120
t-statistic 0.6728 0.8079 0.6320 0.0655 1.1414 0.2597 0.2572 0.7386 0.2663 0.2194
MSE 0.2133 0.2133 0.2143 0.2231 0.2155 0.2197 0.2189 0.2260 0.2237 0.2239

The Fixed Scheme — Monthly Sample

MPE -0.0051 -0.0052 -0.0052 -0.0458 -0.0045 -0.0262 -0.0244 -0.0105 -0.0373 -0.0373
t-statistic -1.2406 -1.2479 -1.2590 -9.1930 -1.0836 -5.4977 -5.6928 -2.4267 -7.8992 -7.8992
Efficiency -0.4951 -0.4970 -0.4946 -0.9011 -0.5310 -0.6132 -0.5655 -0.5238 -0.6484 -0.6484
t-statistic -4.0034 -3.9771 -4.0433 -6.3157 -1.0798 -5.1193 -4.8609 -4.3882 -5.4973 -5.4973
Serial Correlation 0.0499 0.0579 0.0485 0.5828 0.0767 0.3678 0.2553 0.1476 0.4404 0.4404
t-statistic 0.7768 0.9030 0.7539 8.7574 1.2046 5.9956 4.1814 2.2904 7.2561 7.2561
MSE 0.2118 0.2133 0.2113 0.5111 0.2162 0.3451 0.2826 0.2371 0.4097 0.4097

MSE’s for the Quarterly Sample

Rolling 0.7546 0.7577 0.7651 0.9333 0.7777 0.9041 0.8629 0.8570 0.9286 0.9347
Recursive 0.7757 0.7678 0.7930 0.8312 0.7781 0.8163 0.8233 0.8952 0.8170 0.8337
Fixed 0.7254 0.7412 0.7153 1.8534 0.7839 1.6427 0.8907 0.9521 1.2603 1.4685

39



Table 7
Variance Decompositions

The table exhibits the marginal contribution of each source of uncertainty about predicted stock returns, i.e., model
risk, estimation risk, and uncertainty attributed to forecast errors (denoted For. Error), to the overall uncertainty
about predicted returns. The variance components are given by

var{RT+1|D} =
2MX
j=1

P (Mj |D)
∙

E{Υj}+ var{λj}+
³
λ̃− E{λj}

´³
λ̃− E{λj}

´0¸
,

where RT+1 is the next-period excess return, P (Mj |D) is the posterior probability of model j, E{Υj} and var{λj}
are the forecast error and parameter uncertainty components corresponding to model j, respectively. The model

uncertainty component is given by
P2M

j=1 P (Mj |D)
³
λ̃− E{λj}

´³
λ̃− E{λj}

´0
where λ̃ =

P2M

j=1 P (Mj |D)E{λj} is
the predicted mean of the next-period excess return that incorporates model uncertainty. The decompositions are
performed separately for each of six equity portfolios formed as the intersection of two size (S, B) and three book-to-
market (L, M, H) groups, and are presented for both monthly and quarterly samples. For each sample, we examine
three specifications of the prior sample size T0.

Estimation Risk Model Risk For. Error Estimation Risk Model Risk For. Error

Monthly Observations Quarterly Observations
Portfolio:

T0=50 observations per parameter T0=17 observations per parameter

SL 0.02 0.05 0.93 0.06 0.09 0.85
SM 0.03 0.08 0.89 0.07 0.11 0.82
SH 0.04 0.02 0.94 0.06 0.10 0.84
BL 0.02 0.01 0.97 0.05 0.06 0.89
BM 0.02 0.02 0.96 0.06 0.10 0.84
BH 0.03 0.03 0.94 0.05 0.11 0.84

T0=100 observations per parameter T0=34 observations per parameter

SL 0.03 0.05 0.92 0.08 0.09 0.83
SM 0.03 0.09 0.88 0.08 0.12 0.80
SH 0.04 0.03 0.93 0.08 0.10 0.82
BL 0.02 0.02 0.96 0.07 0.07 0.86
BM 0.03 0.02 0.95 0.07 0.10 0.83
BH 0.04 0.05 0.91 0.08 0.11 0.81

T0=25 observations per parameter T0=8 observations per parameter

SL 0.02 0.04 0.94 0.05 0.09 0.86
SM 0.03 0.07 0.90 0.06 0.11 0.83
SH 0.03 0.02 0.95 0.05 0.08 0.87
BL 0.01 0.01 0.98 0.04 0.04 0.92
BM 0.01 0.02 0.97 0.05 0.10 0.85
BH 0.03 0.02 0.95 0.04 0.09 0.87
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Table 8

Asset Allocation and the Economic Loss of Ignoring Model Uncertainty

The table exhibits asset allocations to six size book-to-market portfolios as percentages of the total invested wealth
using three prior scenarios corresponding to a hypothetical prior sample size equal to 25, 50, and 100 observations
per parameter. Asset allocations are derived for investment horizons of one, two, four, six, eight, and ten years, for
relative risk-aversion coefficient (γ) equal to 7, and for current values of predictive variables (zT ) equal to actual-end-
of-sample realizations. We also examine asset allocation when the current values are equal to historical means focusing
on T0 = 50. The table exhibits allocation to individual portfolios, total allocation to equities (Total), and a utility
loss. Utility loss is computed as the loss in an annual certainty equivalent riskless rate perceived by investors who
are forced to ignore model uncertainty and, instead, allocate funds based upon several return-generating processes.
The latter includes the all-inclusive model (All), and models selected by adjusted R2, AIC, SIC, FIC, and PIC, all of
which are described by Bossaerts and Hillion (1999).

Horizon SL SM SH BL BM BH Total All AdjR2 AIC SIC FIC PIC

Asset Allocation Utility Loss

T0=50 observations per parameter, and zT=End-of-Sample Realizations

1 0.00 0.00 0.36 0.00 0.00 0.31 0.67 4.37 1.23 1.71 1.71 3.71 2.33
2 0.00 0.00 0.32 0.00 0.00 0.33 0.65 4.07 1.95 2.56 2.61 3.41 3.13
4 0.00 0.00 0.30 0.00 0.00 0.33 0.63 3.90 2.09 2.63 2.65 2.55 2.73
6 0.00 0.00 0.29 0.00 0.00 0.34 0.63 3.00 1.83 2.27 2.25 1.79 2.08
8 0.00 0.00 0.28 0.00 0.00 0.35 0.62 2.23 1.56 1.89 1.91 1.29 1.63
10 0.00 0.00 0.27 0.00 0.00 0.35 0.62 1.75 1.37 1.59 3.71 0.98 1.35

T0=100 observations per parameter, and zT=End-of-Sample Realizations

1 0.00 0.00 0.31 0.00 0.00 0.34 0.65 3.99 1.00 1.45 1.45 3.35 2.03
2 0.00 0.00 0.29 0.00 0.00 0.35 0.64 3.83 1.78 2.36 2.41 3.19 2.91
4 0.00 0.00 0.27 0.00 0.00 0.36 0.63 3.68 1.94 2.46 2.47 2.38 2.55
6 0.00 0.00 0.27 0.00 0.00 0.36 0.63 2.94 1.79 2.22 2.20 1.75 2.04
8 0.00 0.00 0.28 0.00 0.00 0.34 0.62 2.20 1.54 1.87 1.89 1.27 1.61
10 0.00 0.00 0.27 0.00 0.00 0.34 0.61 1.72 1.34 1.56 3.64 0.95 1.32

T0=25 observations per parameter, and zT=End-of-Sample Realizations

1 0.00 0.00 0.41 0.00 0.00 0.27 0.69 4.81 1.49 2.00 2.00 4.11 2.66
2 0.00 0.00 0.34 0.00 0.00 0.31 0.65 4.26 2.07 2.69 2.75 3.58 3.28
4 0.00 0.00 0.31 0.00 0.00 0.32 0.63 3.97 2.14 2.68 2.70 2.60 2.78
6 0.00 0.00 0.29 0.00 0.00 0.33 0.62 3.05 1.86 2.30 2.28 1.82 2.12
8 0.00 0.00 0.28 0.00 0.00 0.34 0.61 2.22 1.54 1.88 1.90 1.27 1.62
10 0.00 0.00 0.27 0.00 0.00 0.33 0.60 1.69 1.31 1.53 3.66 0.92 1.29

T0=50 observations per parameter, and zT=Sample Means

1 0.00 0.00 0.29 0.00 0.00 0.36 0.65 0.15 0.17 0.27 0.27 0.10 0.15
2 0.00 0.00 0.29 0.00 0.00 0.35 0.64 0.18 0.20 0.32 0.33 0.08 0.14
4 0.00 0.00 0.29 0.00 0.00 0.36 0.64 0.17 0.21 0.28 0.26 0.05 0.08
6 0.00 0.00 0.28 0.00 0.00 0.34 0.63 0.14 0.19 0.25 0.25 0.04 0.06
8 0.00 0.00 0.28 0.00 0.00 0.33 0.62 0.15 0.19 0.22 0.25 0.04 0.09
10 0.00 0.00 0.29 0.00 0.00 0.35 0.64 0.24 0.30 0.33 0.32 0.08 0.21
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